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Abstract

The study of visual navigation problems requires the integration of visual processes
with motor control processes. Most essential in approaching this integration is the study of
appropriate spatio-temporal representations which the system computes from the imagery
and which serve as interfaces to all cognitive and motor activities. Since representations
resulting from exact quantitative reconstruction have turned out to be very hard to obtain,
we argue here for the necessity of of representations which can be computed easily, reliably
and in real time and which recover only the information about the 3D world which is really
needed in order to solve the navigational problems at hand. In this paper we introduce a
number of such representations capturing aspects of 3D motion and scene structure which
are used for the solution of navigational problems implemented in visual servo systems.
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1 Introduction

Sensory motor activity, as it appears in nature, is largely controlled as a servomechanism.
For instance, a person who is just learning to drive generally keeps the car on the road by
fixing his attention on the edge of the road and comparing the location of this edge with
some object on the car, such as the hood cap. If this distance is too small, the learner reacts
by turning the steering wheel to the left;! if it gets too large, he reacts by turning the steering
wheel to the right. It is characteristic of the learner that his driving consists of a series of
oscillations about the desired position. As the driver improves, he introduces anticipation,
or derivative control. In this condition a driver takes into consideration the rate at which
he is approaching the correct distance from the edge of the road; eventually his control
on the steering wheel becomes more sophisticated, possibly turning into a combination of
proportional, derivative and integral control.

This and other examples from nature demonstrate that a continuous interplay between
visual processing and motor activity is a characteristic of most existing systems that interact
with their environments. In the psychological literature systematic investigations have been
conducted on the role of vision in human motor control [41]. It has been concluded that for
human motor coordination tasks, such as hand-eye coordination, there are two phases to a
movement: an impulse phase that performs the initial motion (for instance, that moves the
arm most of the way to the target) and a controlled phase that provides final adjustments.
In the absence of vision, the accuracy of the movements is greatly reduced.

Similar phenomena, of course, arise in robotics. Most robotics systems of the past did
not use perception, but were designed to perform a pre-specified set of motions. As the fields
of Robotics and Computational Vision mature and increasingly complicated autonomous
systems are studied, they have to deal with both perception and action. Computational
theories are needed that explain perceptual capabilities, motor control procedures, as well
as theories underlying the integration of vision and motor control into a working system.

Initial attempts at these difficult problems followed a modular approach. The goal of
Computational Vision was defined as the reconstruction of an accurate description of the
system’s spatiotemporal environment. This description amounts to knowledge of the robot’s
3D motion relative to any point in its environment and the depths or shapes of the surfaces
in view. Assuming that this information can be acquired exactly, sensory feedback robotics
was concerned with the planning and execution of the robot’s activities. The problem with
such separation of perception from action was that both computational goals turned out to
be intractable. Complete visual reconstruction is generally an ill-posed problem, and can
only lead to satisfying results if exact models of the robot’s environment are available. On
the other hand, spatial planning and motion control in 3D space are very sensitive to errors
in the description of the spatiotemporal environment. Furthermore, this approach did not
consider any complexity issues. Visual reconstruction is very time-consuming, the usual
control problems require very expensive matrix computations, and many spatial planning
problems are intractable. Real systems are bounded in their computational capacity and
have to operate in real time.

It has been suggested in different fields—in Computer Vision, Artificial Intelligence, as
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well as Robotics Engineering—that the major problem with this modular approach is that
it does not enforce a tight coupling of perception and action. In Computer Vision the major
approach of visual reconstruction, which aims for complete general representations, has been
severely criticized. It has been argued that Computational Vision, in order to be successful,
has to study vision for systems which are active and purposive [1,2, 5, 6]. Recently a number
of studies have been published which argue for a closer coupling by means of achieving
solutions to a number of specialized visuo-motor control problems, usually problems for
which a model of the environment is available [30, 31]. The field of AI brought forward the
approaches of Connectionism and Behavior-Based Robotics [8], which propose to address
the study of intelligent behavior through the construction of working mechanisms. In the
classical engineering literature, we encounter the so-called approach of image-based control
[4, 13, 34, 40]. The principle behind this approach is that instead of computing intermediate
representations, directly available image measurements are used as feedback for the control
loop. When referring to image measurements, image features are meant that supposedly
can be easily extracted from the imagery, such as areas of faces, lengths of edges, angles,
slopes of lines, or centroids of faces, if well-defined geometrical objects are considered. Most
commonly, a number of feature points extracted from the image are tracked over time. The
idea behind this is that the chosen image features can be directly related to the parameters
of the robot’s joints and thus a map, the so-called Perceptual Kinematic Map [20], is created
which relates the joint space directly to the image space. However, image features of this
kind, in general, are not easily extractable. The tracking of a number of points over a number
of frames constitutes an ill-posed problem. Furthermore, even simple kinematic maps are no
longer simple when it comes to inverting them. Thus the problems that could be managed
in this way required very simple configurations, limiting the robot’s degrees of mobility and
considered only scenes for which geometrical models were available.

Here we argue that from the viewpoint of computational perception the essence of
understanding the coupling of perception and action will come from understanding the ap-
propriate spatiotemporal representations which the system computes from the imagery and
which serve as interfaces to all cognitive and motor activities. These representations have to
be easily obtainable, and they have to be computable reliably and in real time. The contri-
bution of this paper lies in introducing such representations for 3D motion and shape. By
considering three tasks requiring visual information of increasing complexity we introduce
representations which capture a system’s own motion, the motions of objects in the scene,
and the shape of the scene. We also show how these representations can be integrated into
visual servo systems based on dynamic feedback control.

The organization of this paper is as follows. Section 2 describes the visual reconstruction
paradigm. It discusses the computations usually employed to derive from a sequence of
images estimates of 3D motion and the shape of the scene in view. It then outlines the
approach taken in this paper and briefly describes the three tasks addressed. The following
sections are devoted to single tasks; first the task is described, second the representations
computed from the visual information are given, and third the feedback control based on
these representations is discussed. In particular Section 3 starts with a description of the
robotic system used in all three tasks, followed by a description of the task of moving toward
a fixed direction. In the subsections on the visual representations the global constraints




relating 2D flow field information to 3D egomotion information are described generally before
it is explained how these constraints can be used in the servomechanism of a control system.
Then the control is discussed. Section 4 outlines the second task, pursuing a moving target,
which utilizes as visual representation the time to contact, a function of the speed of the
robot and the relative depths of objects in the scene. Similarly, Section 5 is devoted to the
third task, perimeter following, which uses as visual representation a function of the shape of
the scene. Next, experiments related to all three tasks are described, and finally a summary
of the work is given.

2 3D Motion and Shape Estimation

Problems of perception that require some 3D motion and shape information have usually been
addressed in the context of general visual recovery. They were approached by first segmenting
the image into areas of the same relative motion and then reconstructing the motion and
shape of every point in the scene. The computational theory behind this approach, known
as “structure from motion”, suggests solving the problem in two stages. First, accurate
image displacements between consecutive frames have to be computed, either in the form
of point correspondences [15, 38] or as dense motion fields (optical flow fields) [3, 21, 23].
In a second step, the 3D motion and structure are derived from constraints due to the
geometric transformation between the views relating the local 2D image measurements to
3D parameters [9, 22, 24, 26, 27, 35, 37]. Then, in order to solve the particular problems at
hand, subsets of the computed structure and motion parameters have been utilized as inputs
to non-visual cognitive processes, such as planning or control.

Despite the clear methodology and formalism of this computational theory, it turned
out that in both computational steps extreme difficulties are inherently involved. The com-
putation of optical flow and correspondence in the general case is an ill-posed problem and
additional assumptions must be made in order to solve it. Recovering 3D motion from in-
exact or noisy flow fields has turned out to be a problem of extreme sensitivity. As a result,
navigational problems have basically been treated as numerical analysis problems where so-
phisticated techniques (such as singular value decomposition, simulated annealing, Kalman
filtering, maximum likelihood estimation, etc.) have been employed in order to estimate the
3D motion from the geometric and photometric constraints which relate local image motion
to the 3D world.

To be successful in solving real-time navigational tasks we need to find a way of address-
ing the motion problem that uses easily obtainable information and ideally should use that
information only to obtain the aspects of 3D motion and structure that we really need. For
example, we may not need to know the exact motion parameters, but only approximations
to the translation and the rotation, or whether there is significant motion at all, or whether
there is significant rotation, or what the time to collision is, etc. Or we may be interested in
using motion as a depth clue or shape clue; in that case, it is only the depth that matters,
or only the derivatives of depth. Usually, qualitative information about depth is all we care
about.

Since our goal is to study perception from a computational point of view, it is compu-
tational considerations that guide us in the study and development of visual representations.
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Thus we classify visual representations according to the complexity of the computational
models employed to relate image measurements to spatiotemporal representations and ac-
cording to the complexity of the visual input used.

Obviously, not every motion is of the same complexity. Rigid motion is less complex
than affine motion, and affine motion is less complex than a motion which can be modeled
by a projective transformation, or than any other non-rigid motion.

It is less obvious, however, that not all rigid motion requires the same computational
model and the same input. For example, whereas information about the egomotion of a
system can be computed from global image information over the entire image plane, and thus
image information can be employed in a redundant way, information about the motions of
small objects in the scene can only be derived from a small field of view, and thus quantitative
local measurements have to be used.

In this paper, by considering three visuo-servo motor control tasks, we present repre-
sentations for 3D rigid motion and shape of increasing levels of complexity. In all three tasks
we consider a robot system consisting of a body and a camera which can move indepen-
dently of the body. The first and simplest task consists of changing the robot’s direction of
motion towards a fixed direction using visual information. For this task we need only partial
egomotion information about the robot. This can be derived using the global constraints
introduced in [18] and [19], which relate the sign of local image-flow information to the direc-
tion of translation and rotation. In the second task the robot must pursue a moving target
while keeping a certain distance from the target. In addition to computing its own motion
the system also has to derive some information about its speed relative to the target. The
additional visual representation computed is the time to collision. In the third and last task,
the robot has to follow a perimeter. This task requires the system to compute some form of
depth information about the perimeter. The depth representation employed is less complex
than the classical ones of (scaled) distance that are usually used. It is a function of scaled
shape which can be derived without first computing 3D motion.

3 Task One: Moving Towards a Fixed Direction

The robotic system considered in all three tasks consists, as illustrated in Figure 1, of a
body on wheels with a camera on top of the body. To describe the system’s degrees of
freedom we define two coordinate systems, attached to the camera and the robot. The robot
moves on a surface and is constrained in its movement to a forward translation Tr (along
zg) and a rotation wp around the vertical axis, i.e., the yg-axis. The camera is positioned
along a vertical axis that passes through the center of rotation of the robot and it has two
independent rotational degrees of freedom. Its orientation measured with respect to the
coordinate frame of the robot is given by its tilt, 6, and its pan, 0y; there is no roll, 1.e.
6,=0.

We first consider the simple task of moving towards a new direction. Referring to the
mobile robot illustrated in Figure 2, the problem can be stated as follows: a robot, moving
forward with speed S, is required to head towards a new direction, along which some feature
p lies; p is selected beforehand by some higher Jevel process. The robot first directs the




2r
Robot xZ
@ @

Figure 1: Camera and robot local coordinate systems.

camera at p, so that the line of sight is now positioned along p. We assume such gaze shifts
are accomplished by fast saccadic movements.

P

Figure 2: The robot, currently moving forward with speed S, aims to veer towards p. The
dotted path represents the trajectory generated in-flight by the servo system.

The robot must now make a series of steering decisions so that eventually its heading
direction is aligned with where the camera is pointing. To be more accurate, since the robot
moves on a surface and the feature in view can be at any height, we only want the direction of
the forward motion and the direction of the heading to have the same projection on the zz-
plane of the camera coordinate system, i.e., 8, has to become zero. These steering movements
are controlled by a servomechanism, which derives information from images captured by the
camera.

The next section will be devoted to a discussion of the visual features, or more exactly,
the visual patterns, employed by the servomechanism and the manner in which they are
made use of. It will be followed by an analysis of the servomechanism itself.




3.1 Global motion patterns

The visual input that has been used to describe the computational analysis of visual motion
is the optical flow field, which stems from the movement of light patterns in the image plane.
Optical flow fields constitute a good approximation to the projection of the real 3D motion
at scene points on the image [33, 39]. In general, however, accurate values of optical flow
are not computable. On the basis of local information only the component of optical flow
perpendicular to edges, the so-called normal flow, is well defined (the aperture problem;
see Figure 3). In many cases it is possible to obtain additional flow information for areas
(patches) in the image. Thus, the input that can be used by perceptual systems for further
motion processing is some partial optical flow information.

(a) (b)

Figure 3: (a): Line feature observed through a small aperture at time ¢. (b): At time ¢ + &t
the feature has moved to a new position. It is not possible to determine exactly where each
point has moved to. From local measurements only the flow component perpendicular to
the line feature can be computed.

The constraints that have been used in earlier work are mostly local ones. However, the
utilization of image measurements from only small image regions 1s extremely error-prone:
On the one hand, image measurements are very hard to compute accurately. Even if we just
compute the normal flow, the projection of the retinal motion on the local image gradients,
we need to use infinitesimal computations and have to approximate derivatives by difference
quotients, and thus our computations can only be approximations. Much more difficult,
however, is the computation of optical flow or disparity measurements, which requires us to
employ some additional assumptions, usually smoothness assumptions, and thus we run into
problems at motion and depth boundaries. On the other hand, even if we had reasonably
accurate flow, it would not be the case that a small local change in flow implies a small change
in three-dimensional motion. Completely different camera geometries produce locally similar
disparity fields. For example, in an area near the vertical axis in the image plane, 3D rotation
around the horizontal axis in the 3D world produces a flow field similar to the one produced
by translation along the vertical axis in the 3D world.

Also, if we seek to provide solutions for real-time systems, we have to consider time con-
straints imposed on the actions the system performs. Computations that could not possibly
be performed fast, such as linear, non-parallelizable algorithms that require a large number of
steps, or optimization techniques involving a large number of iterations, are of little interest.
In this category falls the computation of exact image displacements. Both the estimation of
discrete disparities and the computation of optical flow require optimization techniques to
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be invoked; and the more effort we put into deriving accurate measurements, by considering
realistic situations dealing with motion boundaries and thus modeling discontinuities, the
more computational steps we have to perform.

In [16, 19] it has been shown that 3D motion information can also be derived from a
global structure in the motion field due to local image information much simpler than optical
flow. New constraints defined on vectors in selected directions were found which manifest
themselves as patterns in the image plane. The patterns are regions containing vectors of
either positive or negative values, which are separated by conic sections and straight lines.
In the following sections we will make use of some of these patterns, namely the “copoint
patterns” and the “coaxis patterns”. A short description of the corresponding constraints
along with the basic equations relating 2D image motion to 3D motion and scene parameters
is given below.

The 2D motion field on an imaging surface is the projection of the 3D motion field of
the scene points moving relative to that surface. If this motion is rigid, it is composed of
a translation t = (U, V, W) and a rotation w = (e, 8,7). We consider the case of a moving
camera in a stationary environment with the coordinate system fixed to the nodal point of
the camera and the image projection on a plane perpendicular to the Z-axis at distance
f (focal length) from the center. Introducing the coordinates (zo,yo) = (%,i, %VL) for the
direction of translation, the so-called FOE, we obtain the following well-known equations
relating the velocity u = (u,v) of an image point to the 3D velocity and the depth Z of the
corresponding scene point [27]:

U = Utrans T Urot =
332
= (—xo+m)—g+a?7y—ﬁ(-f—+f)+’)’y (1)
U = Utrans T Vrot =
_ W als - _
= (-w+y) +a(f+f) ﬁf vz (2)

We consider the flow along certain directions, i.e. the the projection up of the flow u
on direction n = (ng,n,) (unit vector), which is given as

up = (u-n)-n
Thus we obtain u, for the value of the vector up along the direction n:

Uy =

NI

((z = zo)nz + (¥ — yo)ny) , (3)
(0% = B(Z + /) +1w)ns — (a(5 + ) = BZ — 72)ny.

By choosing particular directions, we define classes of vectors. In particular we consider
here motion vectors in the direction of two classes of vectors, the “coaxis vectors” and the
“copoint vectors”.

The coaxis vectors defined with respect to a direction in space are described as follows:
A line through the image formation center defined by the direction cosines (A, B,C) defines
a family of cones with axis (4, B,C) and apex at the origin. The intersections of the cones
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with the image plane give rise to a set of conic sections, called field lines of the axis (A, B,C),
and the vectors perpendicular to the conic sections are are called the (A, B, C') coaxis vectors.
Their direction is parallel to the vector (m, m,), which is defined as

(meymy) = ((—A@* + f?) + Bay + Czf), )
(Azy — B(z* + f*) + Cyf)).

In order to establish conventions about the vector’s orientation, a vector will be said to be
of positive orientation if it is pointing in direction (mg,m,). Otherwise, if it is pointing in
direction (—mg, —m,), its orientation will be said to be negative (see Figure 4).

; T
1 w— ’ 4 rd
L~ AL !
' A , -
il i ‘ / 7 ~.
h /
Lo \
Vo~ \
Vo '
. -— ! (AL, BIC) )
v
A) Al ‘\ hy \ i} 1 x ’I
\ [ Vo ’
N A W RN .
\ \ (AN .
\ N -
\ A T .
NS0 s .
s AN - s
\ RO TR P
N Ve
N S . tmemaae==T
SR -
NN ———
NIRRT 1_
S I~
PN A ST

Figure 4: Field lines corresponding to an axis (4, B, C) and positive coaxis vectors (A,B,C).

If we consider for a class of (A, B,C) coaxis vectors the orientation of the transla-
tional components, we find that a second order curve h(A, B, C, zo, yo; z,y) = 0 (Figure 5a)
separates the positive from the negative components, where

h(A,B, C, Zo, Yo, 2, y) = (‘T = Zg,Y — yO) : (n=c7ny)
z*(Cf + Byo) + y*(Cf + Azo) — zy(Ayo + Bzo)
—zf(Af + Czo) —yf(Bf + Cyo) + f*(Azo + Byo)  (5)

Curve h = 0 passes through the FOE and is uniquely defined by the FOE’s two image
coordinates (zo, o). Similarly, the positive and negative components of the (A4, B,C ) coaxis
vectors due to rotation are separated by a straight line g(4, B,C, o, B,7v;,y) = 0, where

g(AvB7Cva7:B77;Iay) = y(aC— 7A) - x(ﬂc—7B) + ,BAf - an (6)

The line passes through the point where the rotation axis pierces the image plane (Figure 5b).
The point, whose coordinates are (%i, g;f), is called the Axis of Rotation point (AOR). Com-
bining the constraints due to translation and rotation, we obtain the following geometrical
result: A second order curve separating the plane into positive and negative values and a line
separating the plane into two half-planes of opposite sign intersect. This splits the plane into
areas of only positive coaxis vectors, areas of only negative coaxis vectors, and areas in which
the rotational and translational flow have opposite signs. In these last areas, no information
is derivable without making depth assumptions (Figure 5c). The structure defined on the
coaxis vectors is called the coaxis pattern.

For a second kind of classification, the copoint vectors, which are defined with respect
to a point, similar patterns are obtained. The (r,s) copoint vectors are the normal motion
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(a) (b) (<)

Figure 5: (a) The (4, B,C) coaxis vectors due to translation are negative if they lie within
a second-order curve defined by the FOE, and are positive at all other locations. (b) The
coaxis vectors due to rotation separate the image plane into a half-plane of positive values
and a half-plane of negative values. (c) A general rigid motion defines an area of positive
coaxis vectors and an area of negative coaxis vectors. The rest of the image plane is not
considered.

vectors which are perpendicular to straight lines passing through the point (r,s) (see Fig-
ure 6). At point (z,y) an (r, s) copoint vector (o, 0,) of unit length in the positive direction
is defined as
(0rr0) = AEHZD M
J@=r)2+(y - )

For the copoint vectors, the rotational components are separated by a second order curve into
positive and negative values and the translational components are separated by a straight
line. The structure defined on the copoint vectors is called the copoint pattern.

Figure 6: Positive copoint vectors (r, s).

Of particular interest for this application are the (r,s) copoint vectors for which the
copoint (r, s) lies in infinity. The corresponding copoint vectors are all parallel to each other
with gradient 7= = —= (see Figure 7a,b). For these cases the line separating the translational

components is perpendicular to the gradient vector (ng,n,) and has the following form:

k(nmnyammym z, y) = (w - .’L'o)nl- + (y - yo)ny (8)




The curve separating the rotational components is a hyperbola given by
2

zy x

l(nm Ny, &, ﬂ7 Y5 Ty y) = (a_f—_ - (—f_

£ ) +wns + (a(é’fi £ F) =B+ ) =2)m (9)

f

(a) (b)
Figure 7: (a) Parallel copoint vectors. (b) Corresponding pattern.

The positions of the coaxis and copoint vectors in the image plane encode the param-
eters describing the axis of translation and the direction of the rotation axis. Thus, these
constraints lead to formulating the problem of 3D motion estimation as a pattern recogni-
tion problem. If the system has the capability of estimating the the sign of the flow along
the directions defined by various families of coaxis (or copoint) vectors, then by localizing
a number of patterns, or more precisely, the boundaries of the regions separating positive
and negative vectors, the system can find the axes of translation and rotation. The inter-
section of the coaxes’ second order curves and the copoints’ lines provides the FOE and the
intersection of the coaxes’ lines and the copoints’ curves provides the AOR.

How much information will be available for pattern fitting, and thus how accurately the
FOE and AOR can be localized, depends on the computability of flow information. If the
system is able to derive optical flow then it is able to estimate the sign of the projection of
flow along any direction, and thus for every pattern at every point information is available.
If, however, the system is less powerful and can only compute the sign of the flow in one or
a few directions, then patterns are matched as before. The difference is that information is
not available for every point and consequently the uncertainty in pattern matching may be
larger, and the FOE and AOR can only be located within bounds. In the simplest case, which
requires the least amount of computational effort, the flow in only one direction, namely the
one perpendicular to the local edge, is computed (the normal flow). But even this minimal
amount of information can lead to rather small uncertainty in the motion estimation.

If the rigid motion estimation problem is considered for a passive system, a search in the
appropriate parameter spaces has to be performed. Every single pattern is defined by three
unknown parameters (a second order curve of two unknowns and a line of one unknown).
A general rigid motion for which no information is available that could reduce the space of
possible solutions thus requires a search in various 3D subspaces. If, however, the system
is active, and if it has the capability to control its motor apparatus, the above described
constraints may be utilized in much more efficient ways.
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3.2 Using visual patterns in the servomechanism of a moving system

The retinal motion field perceived on the robot’s camera is due to translation and rotation.
The direction of translational motion is defined by the angle between the direction in which
the robot is moving and the direction in which the camera is pointing. The rotation origi-
nates from body motion and is mainly due to the robot’s turning around the y-axis. There
could also be some rotation around the z-axis because the surface on which the robot is
moving might be uneven, but there will be no or only very small rotation around the z-axis
(cyclotorsion).

Recall that the goal of the visual task is to change the robot’s motion such that the
direction of the forward motion and the direction of the heading have the same projection
on the zz-plane of the camera coordinate system. Stated in terms of motion parameters this
means that we want the z-coordinate of the FOE to be zero, but we do not care about the
y-coordinate.

Let us now investigate the patterns of of positive and negative flow vectors which
correspond to such motion. We first consider the copoint patterns with parallel motion
vectors. If the FOE is on the y-axis, i.e. o = 0, (8) describing the translational vectors
becomes

k(nmnyaO) Yo; $,y) Dorng + (y - yo)ny =0
or y= -—;r%; + Y% (10)

which constitutes a line perpendicular to the gradient (n,,n,) with intercept yo. In particular
for the horizontal gradient direction (n, = 1, n, = 0) we obtain the simplified equation

k(1,0,0,y0;2,y): = =0

During the process of steering while the FOE is not aligned with the y-axis, the flow
field due to translation is separated into positive and negative vectors through

n n
E(nz,ny, 20, Y0} T,Y) 0 Y = —T— + Yo + To—
ny Ty

and the horizontal flow vectors are separated by

k(0,1,0,9052,9): ¥ =1%o

The rotation around the y-axis is controlled by the robot’s steering mechanism. Therefore
the robot has knowledge about this rotation and can compensate for the resulting flow
component perceived on the image by subtracting it from the visual motion field. Of course,
we cannot assume the exact amount of rotation around the y-axis to be known, but we can
assume that we know a good approximation to it. This additional knowledge makes one of
the patterns, namely the copoint pattern with gradient (1,0), particularly suitable for fast
estimation of the parameters to be controlled.

Let us consider the rotational components of the copoint pattern with gradient (1,0):
Within the visual field of view the rotation around the z-axis gives rise to flow vectors which
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are mostly parallel to the y-axis and thus perpendicular to the chosen gradients, As a result
the components along the gradient direction (1,0) are close to zero. The remaining (not
derotated) rotation around the z-axis is nearly parallel to the gradients and thus causes
a small, nearly constant component to be added to every flow vector. In summary, the
contribution of the rotation to the pattern can be described as follows: The line in the
translational pattern will be shifted by a small amount in the direction defined by the sign
of the (not derotated) rotation around the z-axis.

For the purpose of the servoing task it will be sufficient to approximate the copoint pat-
tern with gradient (1,0) by its translational flow field components. Using this approximation
gives us the advantage of deriving the z-component of the FOE with very little effort; we just
fit a line perpendicular to the gradient direction separating positive from negative vectors.
This approximation will not affect the successful accomplishment of the task. As the robot
approaches its goal, the steering motion it has to apply becomes smaller and smaller and
thus the additional rotational flow field component also decreases, which in turn allows the
FOE to be estimated more accurately.

If it is certain that the rotation around the z-axis is also very small, then any other
copoint pattern with some gradient (ns,n,) could be used in addition to estimate the FOE’s
coordinates using the approximation of considering the pattern to be translational.

Instead of utilizing copoint vectors we could equally well employ a class of coaxis vectors,
namely those which correspond to axes in the XY -plane, the (A, B,0) coaxis patterns. For
these patterns the hyperbola separating the positive from the negative translational vectors
becomes

h(A7 Ba 07 Zo, Y05 T, y) : By0$2 +A$0y2 - (Ay0+ BCIIo)J?y— Afzx —szy + sz:I"O + Bf2y0 =0

(11)
Since within the field of view f? is much larger than the quadratic terms in the image
coordinates (z%,y2,zy), (11) can be approximated by & as

iI’(AaB7O7xO7y0;$7y): f2(—A$—By+A.’L'0+By0) =0
or y=%xo-|—y0—~g-x

which describes a line with slope =§4- and intercept %:co + %o.

If £, = 0 the intercept is yo. Again, one of these patterns, which allows to directly derive
o, is of particular interest to us. This is the pattern corresponding to the axis (1,0,0). We
call this pattern the a-pattern and the corresponding vectors the a-vectors, since they do
not contain any rotation around the z-axis (denoted in the equations by ).

h(1,0,0,z0,90; 2, y) : Toy® — yozy — 2 f> +zof? =0
which simplifies to T =Ip

The a-vectors do not contain any rotation around the z-axis and the components due to
rotation around the y-axis are nearly constant. As in the previous case we can approximate
the a-pattern by its translational component, which is of a particular simple form. And
again, if we know that rotation around the z-axis is small, to obtain more data we can
employ many (A, B,0) coaxis patterns in the estimation of the FOE.
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3.3 Servo system

For the purpose of our analysis, we will first consider our servomechanism to be a continuous-
control linear system. The input signals encountered in the present application are step
functions. Thus, a natural way to approach the design of our servomechanism is to con-
sider the performance of the system in response to a step function input. Indeed, if our
servomechanism is truly linear, its performance characteristics are completely summarized
by its response to a step-function input.

Typical ways in which such an input is used include: proportional control, derivative
control, integral control, proportional plus derivative control, and so on. The effect of the
proportional gain, K, is to drive the system at higher velocities when the error is larger. The
derivative gain, Ky, helps accelerate the response when it is falling behind and decelerates
the response when it is overtaking the stimulus, which can speed up the response. However,
a higher derivative gain produces an oscillatory response. The integral gain K;, on the
other hand, compensates for delays and disturbances. In the following case study, only a
proportional controller is considered, though in practice a PID controller could be used to
achieve better performance.

To set up the control loop equation, we must relate the robot’s motion to the image
motion. Referring to the coordinate systems defined in Figure 1, we denote the velocity of
the robot’s forward translation by S and the velocity of its rotation around the y-axis by B.
6, and 6, are the pan and tilt of the orientation of the camera with respect to the coordinate
frame of the robot.

Using the subscripts R and C to denote the robot and the camera respectively, we can
express the motion of the robot in the camera’s coordinate frame as follows. First of all, let
P be the position vector that relates the origins of the two coordinate frames. The rotation
matrix ¢ Ry that relates the orientations of the frames is of the following form:

cos 8, 0 sin 0y
—sinf,sinf, cosf, cosbysind,
—sinf, cosf, —sinf, cosbycosb;

Using T to denote translation, and w to denote rotation, we can then express the
motions of the robot and that of the camera in their respective coordinate frames as follows:
T = (0,0,5)7
wr = (0,8,0)

Tc = CRR(fR+w} X P)
= (S sin#b,,S cosf,sinb;,S cosf, cos 0.)"
we = °Rp g
= (0,8 cosf,,—p sin GZ)T

Thus the coordinates of the FOE (zo,yo) that we computed for the camera motion are

related to pan and tilt as follows:

tand
Tog — Y

cos b,

yo = tanf, f (13)
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Our servomechanism should steer the robot in such a way that §, becomes zero. Re-
ferring to (13), it is noted that if the value of 6, is known, we can compute the value of 9,,
thereby allowing the servo system to directly regulate it to zero. However, we do not have
to assume knowledge of 8. It can be seen that regulating zo to zero would accomplish the
same goal.

The position of zo is used as the input to the servo system to control the amount
of steering the robot has to perform. If the servo system is operated with a proportional
controller, the rotational speed, B, of the robot will be given by

[3 = ]{fto

d
Writing 8 as —d%l-’ and substituting (13) for zo, we obtain

df, tand,
dt ~ cosb, (14)

It is instructive to perform some simplifications so as to allow us to analyze how the
aforementioned servo system responds to a step input. Since ;, the tilt, is usually very
small, possibly slowly time-varying due to the camera’s fixation on the feature p, we treat
the denominator term cos §, as a constant whose value is near 1. Furthermore, for the FOE
to lie inside the image, 0, must be smaller than half the field of view of the camera. Thus
even for a camera with a wide field of view (on the order of 70°) tan , is well approximated
by the linear term, §,. This approximation will become better as we approach the straight
ahead direction, since 6, tends to zero. With these two simplifications, we have 2o = K,b0,,
where K, is given by —I_ The overall servo system can be represented schematically as in

. cosfz*
Figure 8.

Input Output
8;=0 -~ e \ B
+\/ Ka Km
Amplifier Motor
0
J Ky X0 visual System

Figure 8: Servo control system.

We are now in a position to study various properties of the servo system. Referring to
Figure 8, let the amplifier gain be K,; then its voltage output V is given by

V = K,e = K0, (15)
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If the motor has no time lag and a speed at all times proportional to V,? then:

_do,
=— =K,V (16)

B
where K, represents the motor constant. Combining equations (15) and (16), we obtain the
differential equation as

dé,
- = K4, (17)
where K is K, K,,. The solution of (17) is given by § = OSe"K !, where 67 denotes the initial

value of the pan.

3.4 Intermittent data

The servo considered thus far operates on the basis of error data supplied continuously. It
is stable if the poles all lie in the half-plane to the left of the imaginary axis. However, in
our actual system, the servo is actuated by error data supplied intermittently, at discrete
moments equally spaced in time. The servo receives no information whatsoever about the
error during the period between two consecutive pulses. We consider the case where the
corrective action of the servo consists in continually exerting a torque on the output shaft in
such a fashion that the torque is always proportional to the error found at the immediately
preceding measurement. The torque then remains constant during the interval between two
measurements, changing stepwise at each measurement. It is clear that overcorrection and
instability will occur when the corrective torque per unit error is too large.

We can perform a standard analysis to convert a continuous system to a sampled-data
one. Especially simple is the case when the continuous servo is controlled by (17). The
transfer function y(z) of the sampled-data version is given by

K
z+ K

y(z) =

In our present considerations, the unit circle plays the role that the half-plane to the
left of the imaginary axis plays in the theory of continuous error input. Thus, the root of
the denominator of y(z) must be numerically less than 1. In other words, |K| must be less
than 1.

4 Task Two: Pursuing a Moving Target

The task discussed in the preceding section is limited to the case where the input is a step
function, i.e., the desired heading direction is fixed. We next consider the case where the

2 Actually, all motors have time constants, that is, exhibit inertial effects, and the differential equation
must be modified by adding a term:
d20, + dé,

T dt? dt

=K,V
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servo system is called upon to follow a time-varying input. We encounter such a situation
when the system is involved in the pursuit of a moving target. In addition, we impose
a second constraint on the control system: while tracking a target, we want the system to
maintain a constant distance away from the target. Such a task requires more complex visual
information processing. In particular, we compute from the images the time to collision, or
time to contact [25], from the observer to the target, and we use it in the control of the
robot.

We will now discuss the estimation of time to contact from images; we will also discuss
related work and describe the technique used here. Let us note here that traditional methods
by which this is accomplished cannot be used in our task. We first discuss the simple case
of tracking a time-varying input via a PID controller. Then, an additional controller that
makes use of the time to contact information is incorporated to meet our more elaborate
criteria.

4.1 Estimating time to contact when the observer and the target are moving

The time to contact between the camera and a scene point is defined as the value VZ{,—, with Z
being the depth and W the relative forward translational speed of the camera with respect
to the point. If the scene point lies on the moving target, then assuming constant relative
motion over time, % expresses the time left until the target will hit the infinitely large
image plane. However, computing the time to contact of a point on the target is greatly
complicated by the difficulty of computing the target’s relative motion if the image of the
target covers only a small part of the image plane. In the literature a number of methods
have been proposed which are based on the utilization of divergence [10, 28, 32, 36]. However,
divergence involves the computation of the spatial derivatives of flow and thus is very hard
to compute. Also, divergence is proportional to two components, which cannot be separated
without additional knowledge about the motion and the shape of the target. These are the
time to contact and the product of the fronto-parallel translational velocity times a function
of slope and tilt of the local plane in view. Another approach that has been proposed is
based on the utilization of constraints from fixation and tracking [17] The change of rotation
in order to track the target accurately is related to the target’s change in depth which in
turn is related to the time to contact. The problem with this approach is that it requires
the robot to keep track of its own exact motion during tracking; this is a difficult task if the
robot is considered not to be static, but moving itself.

The way to circumvent these problems is to use visual information not from the area
covered by the target, but from the area surrounding the target. In particular, if the target
is moving on the ground we can utilize the area at the bottom of the target, which usually
is at about the same distance as the target. From this we can obtain a measure —%,—, where
W is the forward translational velocity of the robot with respect to the static scene and Z
is the depth of points close to the target.

Using the patterns described in Sections 3.1 and 3.2 we can estimate the motion of
the observer. In particular, we can utilize the coaxis vectors parallel to the z-axis or the
a-vectors very efficiently, even if there is additional rotational motion around the z-axis. In
general, knowing the 3D motion and knowing the normal flow at a point allows us to derive
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Z at the corresponding point from (3) as

Z _ (z—z0)ns + (¥ — yo)ny (18)

W Up — (Urotn:z: + vrotny)

For the copoint vectors with gradient (1,0) and the a-vectors, the value of the flow along
the gradient can be approximated as
W

U, = —(z — o)

VA

and thus
Z -
W oun
Since we have estimated z, we can estimate the time to contact from this relationship by
measuring the normal flow at a number of scene points and solving an overdetermined system

of linear equations using a least square minimization.

4.2 Simple tracking

By simple tracking, we mean that the pursuer is not concerned with its distance from the
target. Several additional considerations arise since the input is now time varying. Foremost
among these is that the rise time and the damping should be improved. Furthermore, the
type of the system should be increased so as to eliminate steady state error in response to a
ramp input. Thus a PID controller is needed, where the PI portion is used to improve the
steady-state error of the system, and the PD portion is used to meet the damping require-
ment. More generally, one can use a lead-lag controller to achieve the desired compensation.

Other techniques might be used to speed up the response of the system. Gain scheduling
is one such method. Basically, gain scheduling approximates a nonlinear function with several
linear pieces, each of which admits a linear control design. A typical example of such attempts
is found in the design of an aircraft autopilot, where an airplane system model is linearized
around several hundred operating points selected within the plane’s operating region. In our
case, the adjustable fixed gains are selected as a function of the FOE position. When the
FOE is out of the image, a relatively high torque is applied to quickly bring the FOE within
the field of view of the camera. As the system approaches the straight-ahead direction, the
torque is “stepped down” according to a gain schedule. This improves the transient speed
of response without bringing in steady-state oscillations.

There are various ways to improve the control. The most obvious is that, in order to
track a maneuvering target well, we might use a more sophisticated tracking method for the
camera that builds in some predictive capability. For instance, in Birmiwal et al. [7], two
state models of the target were used: a low-order or nonmaneuvering model and a high-order
or maneuvering model. When a maneuver was detected, a switch from the low-order to the
high-order model was accomplished by adding extra state components. The tracking was
then done with the augmented state model until reversion to the normal model took place
as a result of another decision. The change in dimension of the filter allows acceleration to

be modeled.
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4.3 More elaborate pursuit

We next consider the case when the system not only has to pursue a moving target, but also
has to keep a constant distance from it. To give an example from nature where such a task is
required, consider the following situation: A male hoverfly Syritta shadows a potential mate
until the latter lands on a flower. Only then does it attempt capture by accelerating with
a constant force towards its target. The male while shadowing keeps a constant distance,
about 10 cm, from its quarry [11]. Thus the strategy might consist of an initial phase during
which the target is pursued with full speed. When the target is within a certain range, a
switch in the control scheme is used to maintain the desired distance.

Such (and similar) problems in which additional constraints are imposed on the system
typically lead to optimal solutions with highly complex switching control schemes, the solu-
tion of which is beyond the scope of our paper. Here we present a scheme that, given the
information on time to contact, regulates its speed by a simple proportional controller.

Having estimated the time to contact as described before, we use this information to
drive a separate servo loop that regulates the forward speed of the observer. To intercept
the target as fast as possible, we set the desired.time to contact to zero, and then use the
difference between the desired and the computed time to contact to drive the servo loop.
A desired time to contact with nonzero value will result in a kind of stalking behavior.
Section 6, which describes our experiments, will present results on both these scenarios.

5 Task Three: Perimeter Following

5.1 Estimating functions of depth

More complex than the understanding of rigid motion is the understanding of depth and
shape. Our viewpoint is that it is not necessary to compute exact depth measurements which
are very hard to derive and whose computation requires exact knowledge about the motion
(or stereo) configuration. Instead we could aim at computing less informative descriptions of
shape and depth, such as functions of depth and shape where the functions are such that they
can be computed easily from well-defined image information. These ideas are demonstrated
here by means of the task of perimeter or wall following.

Perimeter following in our application is described as follows: A robot (car) is moving
on a road which is bounded on one side by a wall-like perimeter. On the basis of visual infor-
mation the robot has to control its steering in order to keep its distance from the perimeter
at a constant value and maintain its forward direction as nearly parallel to the perimeter as
possible. The perimeter is defined as a planar textured structure in the scene perpendicular
to the plane of the road. This definition includes any planar structure (connected or not)
that can be found at the boundary of a road or path, such as walls, houses parallel to the
road, or a line of trees.

This task requires us to compute from the spatio-temporal images some form of infor-
mation about the distance between the perimeter and the robot. The most common way
to address this problem is to perform reconstruction in order obtain exact depth. Another
approach requires us to compute the slopes of lines parallel to the road (boundary lines on
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highways). This means that the boundary first has to be detected and thus the segmenta-
tion problem has to be solved. Unless the boundaries have image features, which are clearly
distinguishable from the rest of the image, this is a very difficult task. In the approach
described here we compute some form of “qualitative” depth information which is sufficient
for deducing the steering motion and which we can derive without first having to compute
the motion parameters and without having to detect boundary lines.

Our strategy applied to the perimeter following task is as follows. While the robot is
moving forward it has its camera directed at some point on the perimeter. As it continues
moving it maintains the relative orientation of the camera with regard to its forward trans-
lation. It compares distance information derived from flow fields obtained during its motion
with distance information computed from a flow field obtained when it was moving parallel
to the road. This distance information will tell what the robot’s steering direction is with
respect to the perimeter.

The distance information we use is the scaled directional derivative of inverse depth
along (imaginary) lines on the perimeter. From the observed flow field, normal flow mea-
surements along (imaginary) lines through the image center are selected and compared to
normal flow measurements along (imaginary) lines of equal slope in the reference flow field.-
This information is derived from the image of the whole perimeter, and thus is global. Fur-
thermore, as in the previous tasks, we do not need to compute correspondence or optical
flow, but only the normal flow components.

5.2 Direct visual depth cue

As the robot is moving along its path the motion parameters perceived in the images change.
For comparison reasons, we assume that the angle 6, and the angle 8, between the forward
direction and the camera direction (determining zo and yo) remain constant. The robot’s
rotational velocity (around the z-axis and y-axis) can change in any way. The technique,
however, is independent of these parameters. We next investigate the motion fields perceived
during motion and how depth is encoded in the flow values.

The motion perceived in the images is due to a translation (U,V,W) and a rotation
(a, B). Thus from (3), if we divide u, by n. (if ng # 0), we obtain a function fu(x,n) = 2=
of the image coordinates x = (z,y) and the normal direction n = (n,, ny):

u, (W -=U) (YW -V)n, Ty
= ey

TYny

f f .

Let us choose directions (ns,n,) such that z + —ly = K with K being some constant.
These directions are the (K, 0) copoint vectors, i.e. the vectors perpendicular to lines passing
through the point (K, 0). This can be easily seen by considering (n;,n,) as the tangents to
a family of curves and solving the differential equation for y(z):

Ny , K-—x
—_—= ) =
N V(@) y(z)

+f) )= B(= +f) —)- (19)

fa(x,n) =

which has as its solution




For these directions (19) becomes

(=U -V 4+ KW) Ky Kz
fa(x,n) = = 4+ — 20
(x,m) - +a(f22+ = - B(F + ) (20)
In the perimeter following task, we consider the normal flow along imaginary lines passing
through the image center; thus K = 0 and we obtain

Un Uu-v
f(xn)-—;—=(——Z—1LL)-+ f - Bf (21)

Along each of these lines ;“ is constant and thus (=U — V%) and (a = — Bf) are also
constant and (21) describes fo(x,n) as a function which is “linear in the inverse depth.
For any two points P; and P; with coordinates x; and x; along such a line the difference
(fa(x1,n) = fo(xX2,n)) is independent of the rotation. We thus compute the directional
derivative D(f,(x,n))ne of fo(x,n) at points on lines with slope k = —% in the direction
of a unit vector n* = (—n,,n,) parallel to the image lines. Dropping, in the notation of the
directional derivative, the dependence of f, on x and n we obtain

(22)

Figure 9: Geometric configuration during perimeter following.

We next derive D(%)n+. Referring to Figure 9, the camera is mounted on the robot
and the robot is moving forward with velocity S. The camera is directed toward a point F
on the perimeter. We fix a coordinate system XY Z to the robot, such that the Z axis is
aligned with the optical axis of the camera and the XY plane is perpendlcular to it. Let
m be the line in the image parallel to n* along which we compute depth, and let M be the
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corresponding line in 3D on the perimeter. Let Zy be the depth at the fixation point and @
the angle between the Z-axis and M. The depth Zp of any point P on M is

L
Zp = Zo+ —2=
? ot tan ®
where L, is the value of the parallel projection of FP on the XY-plane. Lp projects per-
spectively onto [p (along n') in the image plane, where Ip = %";i; thus, dropping subscript
P, for any depth value Z we obtain

Zy
1 l

~ Ftan®

7 =

For points with coordinates In* and gradient direction n we obtain

Lye U viy—Z e By gy B2
folin ) = (-0 = VI a4 T - 8+ )
and (22) for any point along the line m becomes
D(fuus = (U + V) (23)
n/nt = ng’ tan ®Z, f

In the remainder of this section we demonstrate the dependence of D(f,)nL on the
robot’s steering direction. In particular, we show that |D(f,)ns| along certain directions
n' decreases as the robot steers towards the perimeter, or that for any two flow fields
corresponding to motion configurations C; and C, depending on parameters (@1, Zo,) and
(®2, Zo,), |D(fa)ntl; > [(D(fa)ntly if |@1] < |®2|. Here, using the absolute value allows to
provide a general notation that describes fixations of the robot to its left and to its right.

5.3 Comparing ordinal depth information

We describe vectors with respect to three orthogonal coordinate systems XY Z, X'Y'Z’ and
X"Y"Z" that are being rotated into each other (see Figure 10). The orientations of these
coordinate systems are such that the Z-axis is parallel to the direction of translation when
the robot is moving parallel to the perimeter, the Z’-axis is parallel to the robot’s viewing
direction in configuration Cj, and the Z”-axis is parallel to the robot’s viewing direction in
configuration Cj. The orientations of the frame X'Y’Z’ and the frame X"Y"Z" are related
to the orientation of the frame XY Z through rotation matrices R’ and R”, as described
below, which are dependent on parameters ¢, ¢, and ¢;, ¢, (rotation around the z-axis is
the same), where |¢}] > |4, .

M1 T2 T cos ¢, 0 sin ¢,
R = |y 7 rhy | =] —sing)sing, cosg, cos¢sing,
T Ty T33 —sin ¢, cos ¢}, —sing; cos ¢, cos ¢
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Figure 10: Three reference coordinate systems.

n 14 1 1 : 1

i T Tis cos ¢, 0 sin ¢},
/A " 1" 7 —_ : /1 ! / " o3 ’
R’ = Th Thy Tog =| —sing)sing, cos¢, cosg,sing;
n 1 1" 3 " / 3 / 1z /
Thy Thy Th3 —sin ¢, cos ¢, —sing, cos ¢, cos ¢,

Any vector V in XYZ corresponds to V' in X'Y’Z’ and V" in X"Y"Z", where
V=RV V"=R"V and V=RTV' V=R7V"

with RTV’ being the transpose of R’ and R"T being the transpose of R".
Let (in C;) m’ be the line in the image with slope k = —2* along which measurements
are taken, which is described by the following line equation:

m' :y' = k2’

In order to obtain a vector in 3D on the corresponding line M’ on the perimeter, we intersect
the plane Y’ = kX’ with the plane of the perimeter, which is at a distance d from the
robot and thus is described through equation X = d in the coordinate system XY Z or
rt X'+, Y' 4+ 74, Z' = d in the coordinate system X'Y’Z’. Thus a unit vector a along M’

in X'Y'Z" is computed as

_7- -—-k'r \/1+k2+ +kr )

and a unit vector b along the Z’-axis in X'Y'Z’ is

0
0
1
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The cosine of the angle ®; between a and b is thus
riy + kry

riy[14 82 + (Het)’

cosd;=a-b=-—

and

raVEk?+1

i+ ko

Let d be the distance from the camera to the perimeter. d is measured along the X-axis in
XY Z. Any vector V in XY Z, which is parallel to the Z’-axis, is described as A(r3;, 73, i),
with A being a scalar. Thus for a vector V of length Zp,, d = Ary; and the value of Zo,

amounts to
d

ZOI =7
T31

tan ®; = —

and thus , ,
1 _ ot kry,

tan ®,Z0,  dvVEZ+ 1
Assuming that the time between measurements is small, and thus the horizontal distance d
in C, is the same as in C;, we obtain for C; (see Figure 11)

(24)

" 1"
1 _ Mt kry,

(25)

tan ®, 70, - dvkz+1

Figure 11: Comparing the values from two configurations.

Comparing (24) and (25), we are thus interested in values k£ for which
[P =+ k| > |riy + kry (26)
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or
| cos ¢, — ksin ¢, sin ¢,| > | cos ¢, — ksin 4 sin 6|

This inequality is true for all (ksin ¢/ sin ¢} > 0), assuming that |¢}| < 45° and |4 < 45°.
(This assumption is used only to allow for a general notation and is not needed if different
sign cases are listed separately.) On the basis of this result the input to the control system
for deriving the steering direction can be generated. At any point in time, D(fn)n+ for
directions nt such that (—-Z—‘: sin ¢/, sin ¢}, > 0) are computed from the visual flow field and
compared to prestored values D(f,)ns due to a forward motion parallel to the perimeter;
the computed sign of the change in |D(f,)n+| defines the sign of the change in the steering
angle.

In the analysis above, the assumption was made that the horizontal distance d does not
change. When this assumption does not hold, the same principle can still be applied to a
smaller number of values if enough image gradients are available. If the distance d decreased
between C; and Cy, then |r}; + kr), | may be smaller than |rf; +krg,| for values of [k| smaller
than some threshold 7', but must be larger for values of |k| greater T', and thus if gradients
on a line with |k| > T are available, these measurements can still be used for comparison.

Finally, we want to characterize the lines for which (k sin ¢/, sin ¢}, > 0). Comparing
such a line to the image of a line parallel to the road on the perimeter passing through the
image center, we find that the slopes of the two lines are of opposite sign. For example, if the
camera’s optical axis is pointing down and to the right (as in Figure 9) then 4. is negative
and ¢, is positive and the slope of the parallel line is positive, whereas the slope of the line
we use for comparison has to be negative.

6 Experiments

This section presents the results of simulations and results obtained with real images using
the algorithms proposed in the previous sections.

A. Task 1

The first experiments used simulations of the robot’s trajectory. The robot is initially moving
at an angle relative to the z-axis. It is then required to steer itself so that it is heading along
the z-axis, where the feature p is located at a distance of 5 m away. The robot is moving
with a constant forward speed of 1.5 m/s.

The mobile platform is a conventionally steered vehicle; the instantaneous radius of
curvature r of its trajectory is related to the steering angle of its wheel 6 as follows:

0.5L
sin GR

r =

where L is the body length of the vehicle. The field of view of the camera used in the
simulation is 50°. We created the synthetic normal flow field from a scene with random
depth and we added zero-mean Gaussian noise with a standard deviation of 1 pixel to the
normal flow measurements. For the estimation of zo, we employed the a-vectors, where (as
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described in Section 3.2) we approximated the a-hyperbola by a straight line, which was
estimated using a linear classifier.

Figure 12 shows the trajectories for two different values of the proportionality constant
K generated by the servo system. The two curves correspond to values of K = 0.1 and
K =0.3. As can be seen, the system has a poor rise time and insufficient damping—typical

of a proportional controller.

-0.02 0.00 0.02 0.04 0.06 o.o8 a.10
X Axis

Figure 12: Trajectory generated by the servo system.

Figure 13: 3D configuration as studied in Task 1.

In our experiments with real images, the mobile platform on which the camera was
mounted was a conventionally steered vehicle. The camera had a focal length of 1136 pixels,
and the image dimensions were at 720 x 576; thus the field of view was approximately
30°. Considering that the steering movements must be small so as to reduce inter-frame
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disparity, and allowing for the computation of image flow, especially since the focal length
of the camera was very large, we chose to operate the servo system with a proportionality
constant of K = 0.1. Figure 14 shows some images taken by a camera mounted on a mobile
platform, as the latter is making steering movements. The feature p corresponds to the star
in the center of the image, mounted on a tripod and initially located at a distance of 5 m
from the camera. Figure 13 displays the configuration of this setting including the robot’s
trajectory. Figure 14a, c, and e show images taken by the system at three time instants (as
marked in Figure 13) with the normal flow fields superimposed. Figures 14b, d, and f show
the positive and negative a-vectors as computed from the normal flow fields in black and
white and the line approximating the a-hyperbola which has been fitted to the data.

Figure 14: Task 1: Some scenes along the trajectory.
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B. Task 2

The experiments on Task 2 were based on simulations. In the simple type of pursuit, the
servo operates based on the misalignment between the visual axis and the axis of the robot
body. It is not concerned with the distance between the robot and the target. In other
words, the forward speed of the robot is not regulated.

Figure 15 depicts the trajectories computed for the following two scenarios. In Fig-
ure 15a, the target was moving to the left with a speed of 0.5 m/s; there was no motion
along the z-axis. In Figure 15b, the target was receding in depth as well. The target was
initially located 10 m away from the robot. In both cases the servo was operated based on
a PID controller, with Kp = 0.3, K; = 0.03, and Kp = 0.1, where Kp, K7, and Kp are
the proportionality constant, the integral constant, and the derivative constant, respectively.
The trajectory of the target is shown as a solid line, and that of the robot is shown as a
dotted curve. As can be seen, compared to Figure 12, the system now has much better
transient characteristics, due to its PID control.
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Figure 15: Simple pursuit of a moving target: (a) Target moving along the z-axis. (b) Target
moving off at an angle. The dotted path represents the trajectory of the robot; the solid line
represents that of the target.

For the purpose of target interception, in addition to the above control, forward speed
regulation is required. Figure 16a shows the case where the speed is regulated so as to
minimize the distance between the target and the pursuer as much as possible, subject to
the speed limit of the robot. It can be seen that the target was captured within a much
shorter time. Figure 16b shows the case where the criterion is to maintain a constant time
to contact. As described in Section 4.3 the control was operated by setting the desired time
to contact to zero and using the difference between the desired and the computed time to
contact to drive the servo loop. The study shows that as the robot approaches the target, it
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slows down accordingly. Thus a kind of shadowing behavior is exhibited, and the interception
of the target can be effected in a much smoother manner.
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Figure 16: More elaborate pursuit of a moving target: (a) To minimize time to contact.
(b) To maintain a constant time to contact. The dotted path represents the trajectory of
the robot; the solid line represents that of the target.

C. Task 3

In the experiments on Task 3 a mobile platform with a camera mounted on it moved along
an alley-like perimeter. The camera had a focal length of about 1000 pixels and the image
dimensions were 512 x 512. The servomechanism was implemented as a simple proportional
control relating the robot’s rotational speed around the y-axis to the directional derivative
of f, (as defined in Section 5.2). The scene contained a highly textured perimeter. We thus
derived image measurements along a number of lines and used the mean of the computed
estimates as input to the servo system. Figure 17a shows one of the reference images, which
was taken when the robot was moving parallel to the perimeter. The lines along which image
measurements were taken are overlaid on the image in white. Figure 17b shows the normal
flow field computed for this same image. Figure 17c and d display two more images taken
while the robot moved along its path, one when it steered towards the perimeter and another
one later when it again moved away from the perimeter.

7 Conclusions

A new way of making use of visual information for autonomous behavior has been presented.
Visual representations which are manifested through geometrical constraints defined on the
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Figure 17: Task 3: The robot moves along an “alley”.

flow in various directions and on the normal flow were used as input to the servomechanism.
Specifically, the constraints described are global patterns in the sign of the flow in different
directions whose positions and forms are related to 3D motion, and patterns of normal flow
along lines in the image which encode relative 3D distance information. 3D motion and
structure representations derived from these constraints were applied to the solution of a
number of navigational problems involving the control of a system’s 3D motion with respect
to its environment and to other moving objects. Some of the constraints described, however,
are of a general nature, and thus might be utilized in various modified forms for the solution
of other navigational problems.
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